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Abstract

Contrastive  learning-based  vision-language  pre-
training approaches, such as CLIP, have demonstrated
great success in many vision-language tasks. These meth-
ods achieve cross-modal alignment by encoding a matched
image-text pair with similar feature embeddings, which are
generated by aggregating information from visual patches
and language tokens. However, direct aligning cross-modal
information using such representations is challenging, as
visual patches and text tokens differ in semantic levels and
granularities. To alleviate this issue, we propose a Finite
Discrete Tokens (FDT) based multimodal representation.
FDT is a set of learnable tokens representing certain visual-
semantic concepts. Both images and texts are embedded
using shared FDT by first grounding multimodal inputs
to FDT space and then aggregating the activated FDT
representations. The matched visual and semantic concepts
are enforced to be represented by the same set of discrete
tokens by a sparse activation constraint. As a result, the
granularity gap between the two modalities is reduced.
Through both quantitative and qualitative analyses, we
demonstrate that using FDT representations in CLIP-style
models improves cross-modal alignment and performance
in visual recognition and vision-language downstream
tasks. Furthermore, we show that our method can learn
more comprehensive representations, and the learned FDT
capture meaningful cross-modal correspondence, ranging
from objects to actions and attributes."

1. Introduction

Recently, the Contrastive Language-Image Pre-training
(CLIP) framework [22,40] has demonstrated notable capa-
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Figure 1. Comparison of different feature representation learning
methods. Left: contrastive vision-language pre-training (CLIP).
Right: CLIP with our proposed finite discrete tokens (FDT).

bilities for learning powerful and transferable feature rep-
resentations [16, 30, 54-57]. In this framework, models
are trained to align text and image information in a two-
stream approach where image and text representations are
extracted through two separate encoders. The InfoNCE
loss [40] is used to train the encoders which enforces the
representations of matched image-text pairs to be closer,
while those of unmatched pairs to be far apart (as shown
in Figure 1 (Left)).

However, the fact that the information conveyed in im-
ages and text captions is naturally of different levels of gran-
ularities [42, 48] is not considered by such models. For ex-
ample, an image of a dog also portrays various lower-level
attributes, such as its breed, fur color, body size, and shape,
while the textual description, such as “a smiling dog”, is
generally more abstract and compact. In CLIP, images and
text captions are represented through the aggregation of vi-
sual patches and text tokens without explicitly aligning the
visual and semantic concepts at the same level of granular-
ity. It can cause challenges in multimodal representation
learning, or even potentially result in performance degrada-
tion [49]. Additionally, the learned models may overlook
certain semantic concepts [20]. Therefore, we argue that
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unifying the information granularities of images and texts
can help generate better multimodal representations.

In this paper, we propose a new Finite Discrete Tokens
(FDT) based representations. FDT is a set of learnable to-
kens that encode cross-modal shared semantic concepts.
Both image and text are represented as the combinations
of FDT shared between modalities so that the information
granularities are unified (see Figure 1 (Right)). Figure 2
gives an overview of our method. For an image, its patch
embeddings are first extracted by an image encoder. The
correspondence between the FDT and the image is then
measured by max pooling over the attention weights of FDT
among all patches. Finally, the FDT-based representation
of the image is calculated as the attention-weighted sum
of FDT. The FDT-based embeddings for input texts can
be constructed in the same way. The encoders and FDT
are trained to pull close the FDT-based representations of
matched image-text pairs while pushing away those of un-
matched pairs by using the InfoNCE loss. To the point of
leveraging a shared FDT across modalities is to enforce the
matched visual and semantic concepts to be represented by
the same discrete tokens. For example, the visual patches
of a dog and the word “dog” should activate the same sub-
sets of FDT. We empirically demonstrate that this can be
achieved by simply enforcing relatively sparse attention-
weights between FDT and the inputs.

We conduct extensive experiments covering a wide range
of pre-training settings and downstream tasks to evaluate
the proposed method. We conclude with the following key
observations: (1) Our approach exhibits consistent perfor-
mance enhancements across various pre-training dataset
scales, CLIP-based pre-training frameworks [28], and en-
coder architectures. Notably, our method outperforms CLIP
by 5.0% on zero-shot image classification when pre-training
on 145M datasets, and by 33.4% in image-text retrieval with
30M datasets; (2) Our method tends to alleviate the model
degradation problem and learns more comprehensive fea-
ture representations than CLIP; (3) The learned FDT ex-
hibit better: we visualize FDT’s correspondent patches and
language tokens, and the results show that FDT success-
fully capture and align visual-semantic concepts including
objects, attributes, and actions.

2. Related Work

Vision and Language Pre-training. Vision and lan-
guage pre-training methods can be briefly classified into
two-stream and single-stream models based on their ar-
chitectures. A typical two-stream model leverages indi-
vidual encoders to extract continuous feature embeddings
from the inputs, and enforces the embeddings of a matched
image-text pair to be similar by using contrastive learn-
ing [18,22,40] and additional self-supervised tasks [28,50].
Inherited from the encoder design, these feature embed-

dings convey information aggregated from local vision
patches and language tokens, which encompass different
semantic levels and granularities and are constrained by
how patches are generated. Therefore, we propose FDT-
based representations to directly perform contrastive learn-
ing on FDT that denotes high-level vision-semantic con-
cepts. The single-stream approaches feed all inputs together
into a unified encoder (mostly transformers) to enhance
the cross-modal interactions for a better cross-modal align-
ment [0, 7,26,27,44,50]. For simplicity, we also clarify
models consisting of individual encoders followed by mul-
timodal fusion operations (late-fusion) as one-stream, be-
cause it requires the inputs from all modalities for infer-
ence and hence does not support ANN, similar to a typi-
cal one-stream model (early-fusion). To combine the best
of both worlds, FDT-based representations bridge the gap
between different modalities with cross-modal interactions
by vision-to-token and language-to-token information ex-
change, while maintaining a two-stream structure.

Vector-Quantization and Codebook. Vector-quantization
is first proposed for image generation showing that im-
age information can be encoded by discrete representa-
tions (namely codebook) [45]. Each image patch is rep-
resented by its nearest-neighbor code’s embedding, and
the decoder reconstructs the input image based on these
code embeddings. Because finding nearest-neighbor is non-
differentiable, the codebook is trained either by minimiz-
ing the distance between the code and image patch embed-
dings when the encoder is stop-gradient, or by exponential
moving averages (EMA). Applying VQ to multimodal pre-
training is more challenging, as the codebook now needs
to accommodate multimodal contents and is often found
to be sensitive to initialization (cold-start problem). To ad-
dress these challenges, previous studies leverage encoder or
code warm-up [31], knowledge distilled vision tokenizers
from pre-trained vision-language models [39], one-stream
models to enforce multimodal code learning [21,27], and a
combination of these techniques [46]. As a comparison, our
approach is designed to be more intuitive where only differ-
entiable operations are used and it can be trained end2end
from scratch while still maintaining a two-stream structure
for ANN in large-scale retrieval tasks. More technical de-
tails will be discussed in Section 3.2.

Dictionary Learning. Dictionary learning is another group
of discrete representation learning in addition to VQ [3, 15,

]. Given a dictionary matrix [17], the representation of
a signal is the weights that can linearly combine the dic-
tionary matrix to reconstruct the signal with minimal error.
When learning multi-modal representations [3, 15], a shared
dictionary matrix is used for facilitating cross-modal infor-
mation alignment and fusion. The dictionary is served as
the cross-modal information anchor, which shares the same
idea as our method. However, the models are trained to
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Figure 2. Left: Overview of the proposed method. Both the image and text information is encoded with shared FDT during cross-
modal contrastive pre-training. Right: The process of grounding image or text features to FDT. The attention weights between visual
patch/language token and FDT are first calculated, and then max-pooled over all visual patches/language tokens. The attention-weighted

sum of FDT is calculated as the FDT-based features.

solve a slow optimization problem, and the feature learned
by solving the reconstruction or generative problem may
have limited discriminative capability. By contrast, our
model is trained end-to-end to learn discriminative infor-
mation.

3. Method
3.1. Revisiting Feature Representations in CLIP

In CLIP, the image and text features are the aggregation
of the embeddings of image patches or language tokens,
respectively. Specifically, the image encoder takes an im-
age as input and extracts the patch or local region embed-
dings based on the self-attention [12], or convolution opera-
tions [19]. The obtained patch features are then aggregated
as the final representation of the image f, by using the at-
tention pooling or the [CLS] token [2,40], which can be
formulated as:

e<fgvfpi> (1)
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Here, w,, is the weight of i-th patch, which measures the
importance of the patch to the final representation. <, >
is the inner-product function. NN, is the number of patches,
and f,, denotes the embedding of i-th patch. f, is the [CLS]
token embedding or the average-pooled patch embedding,
which embeds the global image information.

Similarly, for the text encoder, the extracted text repre-
sentation of an input sentence can also be regarded as the
weighted sum of language token embeddings:
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where V; is the number of language tokens. f;, is the em-
bedding of the i-th language token. It is extracted with the
self-attention operations [ 1,4 1], which model the relation-
ship among the language tokens. wy, is the weight of the
i-th language token, which is calculated by the following
Equation 1 using the text [CLS] token.

Equations 1 and 3 suggest that images or texts are rep-
resented by two different bases: visual patches and lan-
guage tokens. However, the information conveyed by im-
age patches and language tokens may have different seman-
tic meanings and granularities. Additionally, the bases are
dynamic, since the visual patches or language tokens of dif-
ferent images or texts are different. It may increase the dif-
ficulty of learning an optimal alignment between image and
text features [20,49]. Thus, the encoders may fail to capture
important semantic concepts shared in both modalities and
may encode irrelevant information.

3.2. FDT-based Representation

To address the aforementioned limitations of feature rep-
resentation in CLIP, we propose the FDT-based representa-
tion. Figure 2 gives an overview of our proposed method.
Instead of representing the image and text with different
bases, FDT serve as the common bases for both the im-
age and text representations. As a result, the granularities
of cross-modal information are explicitly unified. More-
over, the FDT encode the semantic information shared by
both modalities. It can be regarded as prior knowledge that
guides image and text encoders to extract feature embed-
dings. In the following, we elaborate on the steps necessary
to achieve FDT-based representations:

Grounding to FDT. Let {¢;|: = 1,...,C} be FDT, where
C' is the number of shared tokens, and ¢; is the i-th discrete
token. Given an input image, its patch embeddings are first
extracted using the image encoder. The extracted patch em-



beddings are then projected to the FDT space by using a
projecting function. The relevance between the image and a
token is obtained by calculating the inner product between
the projected patch embeddings and the token, and selecting
the maximal value, which can be formulated as

ry = mjax < fp;sCi >, )

where 77 is the relevance between the image and the i-th
tokens. Intuitively, the proposed patch-level relevance cal-
culation mechanism may enjoy two advantages: (1) it can
capture small objects that exist in a single patch; (2) it helps
remove the influence of irrelevant noisy patches that have
low relevance to all FDT.

The relevance between the image and FDT is normalized
by a Softmax function, which generates the final weights of
each token as follows:
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where w; is the weight of the i-th token with respect to the
image. Similarly, the weight w! of the i-th token assigned
by an input text can be calculated using

rt = mjax < fi;,¢i >, (6)
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Intuitively, FDT can be treated as prior knowledge for
the image or text information. With the help of FDT, the ex-
tracted features of both modalities are grounded to a shared
manifold space, thus enabling the cross-modal interaction.

Normalizing Concept Weights with Sparse Constraints.
We expect the normalized weights of FDT to be sparse,
since it can largely reduce noise and make the results more
interpretable [3, 17]. Additionally, we empirically show that
sparsity is crucial for FDT to learn cross-modal correspon-
dence, where a token corresponds to the same image and
text semantic meaning. We use the Sparsemax function [35]
for sparser weights, which is defined as:

argmin [jp — r||?, (8)
peAK71

where r is the vector consisting of the relevance score
between the image or text and FDT (Equation 4 and 6).
This function first calculates a threshold, and then sets the
weights below the threshold to zero for sparsity. In contrast,
the commonly used Softmax function cannot explicitly as-
sign FDT with exactly zero probabilities.

Generating FDT-based Embeddings. Given the normal-
ized weights, the FDT-based features of the image frP°7
and text P71 are the weighted sum of FDT:

C

FDT

TP = e )
7

C
PT =3 "wl ¢ (10)

Equations 9 and 10 show that image and text features are
represented by the same base FDT, which explicitly unifies
the granularities of image and text information.

Given the FTD-based features, the encoders and FDT are
trained to make the similarity between FDT-based features
of matched image-text pairs larger than those of unmatched
pairs:
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where N is the number of matched image-text pairs, sim
is the cosine similarity function, and 7 is the temperature
hyper-parameter.

Intuitively, the equation shows that FDT are updated
based on both the image and text modalities, and thus FDT
is trained to learn the information shared by both modalities.

4. Experiments
4.1. Experimental Settings

Pre-training Datasets. We use four publicly available
datasets, including YFCC-15M V2 [9], Conceptual Cap-
tions (CC3M) [43], Conceptual 12M (CC12M) [5] and
LAION115M [25] datasets to pre-train our models. We
construct three different pre-training settings, including
15M, 30M, and 145M settings. Each of the settings uses
different combinations of pre-training datasets, as shown in
Table. The 15M setting is used for the ablation study and
to compare our methods with state-of-the-art methods un-
der a fair setup [9]. The 30M and 145M settings are used to
evaluate the scalability of our model.

Setting  Dataset

15M YFCC-15M V2
30M YFCC-15M V2, CC3M, CC12M
145M  YFCC-15M V2, CC3M, CCI12M, LAION115M

Table 1. The used pre-training datasets under different settings.

Evaluation Protocols. Following previous work [9,28,51],
our method is evaluated on three commonly-used down-
stream tasks, including zero-shot image classification, lin-
ear probe image classification, and zero-shot image-text



C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG
SLIP [36] 50.7 255 333 235 49.0 347 144 599 343 36.1
MS-CLIP-S [52] - - - - - - - - 36.7 -
CLIP [40] 604 335 396 23.1 54.0 420 170 655 370 413
FILIP [51] 65.1 342 432 241 52.8 50.8 24 68.9 395 447
DeCLIP [28] 728 403 499 362 60.1 48.8 264 727 432 50.0
CLIP+FDT (Ours) 67.7 399 429 258 55.5 455 265 69.6 393 459
DeCLIP+FDT (Ours) 757 452 529 40.7 64.6 520 307 762 458 538

Table 2. Zero-shot image classification accuracy (%) under the 15M setting. The dataset names are abbreviated. C10/100 is CIFAR10/100.
F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over all datasets.

C10 C100 F101 PETS FLOW SUN CARS DTD CAL AIR AVG
SLIP [36] 874 695 713 705 91.9 669 275 656 862 2777 66.5
MS-CLIP-S [52] 872 667 760 62.1 93.8 717 275 694 816 329 669
CLIP [40] 883 686 721 725 92.6 69.5 298 678 862 2777 675
FILIP [51] 86.5 666 71.7 692 93 69.6 300 664 857 270 66.6
DeCLIP [28] 894 696 759 714 95.7 71.6  30.1 669 89.0 267 68.6
CLIP+FDT (Ours) 89.1 712 744 730 93.4 708 314 694 877 279 688
DeCLIP+FDT (Ours) 89.8 712 777 739 95.7 729 337 69.6 894 269 70.1

Table 3. Linear probing image classification accuracy (%) under the 15M setting. The dataset names are abbreviated. C10/100 is CI-
FAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft. “AVG” is the average accuracy over all datasets.

Flickr30K MSCOCO VQAV2

Image Retrieval ~ Text Retrieval Image Retrieval ~Text Retrieval

R@l R@5 R@l R@5 R@l R@5 R@] R@5 y/n number other overall
SLIP [36] 233 472 357 658 132 313 21.0 446 69.8 343 38.1 50.7
MS-CLIP-S [52] - - - - 19.4 40.8 285  54.1 - - - -
CLIP [40] 27.6 53.9 428 715 159 36.7 248 498 677 31.9 33.6 475
FILIP [51] 30.6 58.2 463 744 162 375 256 50.8 68.1 345 362 492
DeCLIP [28] 355 63.0 512 807 19.6 41.9 30.1 556 703 349 369 504
CLIP+FDT (Ours) 32.6 58.6 51.0 783 194 40.8 29.6 553 678 34.6 39.6  50.6
DECLIP+FDT (Ours)  39.4 66.8 57.0 823 225 45.5 340 596 678 358 413 516

Table 4. Results of the vision-language tasks under the 15M setting, including the zero-shot image-text retrieval on the Flickr30K and
MSCOCO (5K) datasets, and the non-linear probing on VQA v2 dataset.

retrieval. Moreover, we propose a non-linear probe task
to evaluate the effectiveness of the learned features for
VQA [2]. The FDT-based features are used for all the down-
stream tasks.

Zero-shot image classification.  In this task, image cat-
egories are represented by the text descriptions generated
from their names. After extracting the embeddings of these
text descriptions and input images by pre-trained encoders,
the category of an image can be predicted by choosing the
one whose text descriptions have the largest cosine simi-
larity score. Following the setting of CLIP and DeCLIP,
we construct 80 prompts to evaluate the performance of
different approaches. We use 9 of the 11 commonly used
datasets [28] for evaluation. The StanfordCars and Aircraft
datasets are not used, because the pre-training datasets con-
tain few captions about car models or aircraft types.

Linear Probe Image Classification. A linear classifier is
trained to predict the categories of images based on the
FDT-based features of the images. We use 10 of the 11
commonly used datasets for evaluation. We do not report

the results on ImageNet-1K, since conducting hyperparam-
eter sweeping on this dataset is computationally expensive.

Image-text retrieval. The image-text retrieval task is evalu-
ated on the Flickr30K [53] and MSCOCO [29] dataset. The
recalls at different K values (R@K, K = 1, 5, 10) are re-
ported as the evaluation metrics. They are used to measure
the percentage of relevant items that match the queries in
top-K retrieved items. We also report rsum, which is ob-
tained by summing all R@K values.

Non-linear probe task. The task is to evaluate the capabil-
ity of learned features for vision-language reasoning tasks.
The FDT-based embeddings of an image and its questions
are concatenated and fed to two fully-connected layers with
non-linear activation to predict the answer. More details can
be found in the supplementary materials.

Implementation Details. We evaluate our method by in-
corporating it into two state-of-the-art contrastive vision-
language pre-training approaches, namely CLIP [40] and
DECLIP [28]. Our implementation is based on the open-



ZS CLS LP CLS ZS-Flickr30K ZS-MSCOCO VQAV2
Setting  AVG Acc AVG Acc IRR@1 TRR@1 rsum IRR@1 TRR@1 rsum overall
CLIP 15M 413 67.5 27.6 42.8 343.1 159 24.8 236.8 475
CLIP+FDT  15M  459(14.6)  68.8(11.3) | 32.6(15.0) 51.0(18.2) 376.5(133.4) | 19.4(13.5) 29.6(14.8) 263.1(126.3)  50.6(13.1)
CLIP 30M 56.8 73.8 43.6 58.8 431.3 23.3 34.8 300.8 50.6
CLIP+FDT  30M  61.2(14.4) 75.6(11.8) | 52.5(18.9) 70.8(112.0) 474.2(142.9) | 28.3(15.0) 43(18.2) 337.1 (136.3)  53.4(12.8)
CLIP 145M 64 82.1 52.6 67.9 469.8 29.3 42.1 335.2 53.1
CLIP+FDT  145M  69.0(15.0) 823 (10.2) | 56.3(13.7)  75.9(18.0)  489.4(119.6) | 31.0(11.7) 46.4(14.3) 353.0(117.8)  55.2(12.1)

Table 5. Ablation study results when using different scales of training data. “ZS” means zero-shot. “AVG” is average. “ACC” is accuracy.
“LP” stands for linear prob. “CLS” represents classification. “IR” and “TR” are image retrieval and text retrieval, respectively.

ZS CLS LPCLS ZS-Flickr30K ZS-MSCOCO VQAvV2

AVG Acc AVG Acc IRR@1 TRR@1 rsum IRR@1 TRR@1 rsum Overall
CLIP-ViT-B/32 41.3 67.5 27.6 42.8 343.1 159 24.8 236.8 47.5
CLIP-ViT-B/32+FDT  45.9(14.6) 68.8(11.3) | 32.6(15.0) 51.0(18.2)  376.5(133.4) | 19.4(13.5) 29.6(14.8) 263.1(126.3)  50.6(13.1)
CLIP-ViT-B/16 45.2 68.8 353 50.5 387.8 19.3 29.7 263.6 49.2
CLIP-ViT-B/16+FDT  49.9(14.7) 71.3(12.5) | 41.6(16.3)  60.8(110.3) 425.5(137.7) | 23.4(14.1) 35.3(15.6) 295.4 (131.8) 54.3(15.1)
CLIP-Swin-B 39.6 68.5 30.5 48.5 368.1 17.7 26.0 247.6 46.5
CLIP-Swin-B+FDT 42.4(12.8)  70.7(12.2) | 39.6(19.1) 57.9(19.4) 415.5(147.4) | 22.3(14.6) 33.8(17.8) 288.3(140.7)  51.6(15.1)

Table 6. Ablation Study results when using different image encoder architectures. “ZS” means zero-shot. “AVG” is average. “ACC” is
accuracy. “LP” stands for linear prob. “CLS” represents classification. “IR” and “TR” are image retrieval and text retrieval.

source PyTorch implementation® of the two methods. We
use 16384 tokens, each with 512 dimensions. Please refer
to the supplementary material for detailed information.

4.2. Comparison with State-of-the-Art Approaches

We compare our method with the state-of-the-art CLIP
family approaches on the benchmark proposed in [9]. In this
benchmark, methods are compared fairly by pre-training
them using the same training recipe and data (our 15M set-
ting). Note that the original paper only reports the results
for zero-shot classification on the ImageNet dataset, and the
results of other tasks are obtained by directly applying the
released checkpoints for evaluation.

The results for zero-shot image classification, linear prob
image classification, and vision-language reasoning tasks
are reported in Table 2, 3, and 4, respectively. First, we
observe that using the proposed FDT-based representation
with CLIP (i.e., CLIP+FDT) can achieve significant perfor-
mance improvement over CLIP on all the downstream tasks.
Notably, CLIP+FDT can outperform FILIP [51], which
aligns image and text information at the fine-grained patch
and language token levels. The results suggest that aligning
global cross-modal information in a unified space is more
effective than directly aligning fine-grained patches and lan-
guage tokens with different granularities. Interestingly, the
linear probe results show that CLIP+FDT can learn a com-
parable image encoder with DeCLIP, which applies various
self-supervised pretext tasks that have already been proven
effective for visual recognition. One possible reason is that
aligning the information in a unified space helps our model
better leverage semantic supervision signals in the language

Zhttps://github.com/Sense-GVT/DeCLIP

domain. We can also see that our method can significantly
improve DeCLIP for all the tasks and achieve state-of-the-
art performance on the benchmark. It shows that our ap-
proach is compatible with self-supervised learning tasks to
improve CLIP. Moreover, FDT can improve the VQAv2
task, which requires the capability of collaborative multi-
modal reasoning and content understanding.

4.3. Ablation Study

In this section, we conduct ablation studies to investigate
how different factors influence the performance of our ap-
proach. These factors include the pre-training data scale,
image encoder architecture, and several design choices of
our method. Throughout the ablation study, we use the
CLIP model as the baseline to save computation costs.
Pretraining Data Scale. We evaluate the performance of
our methods on different pre-training data scales by further
pre-training the model on 30M and 145M data. According
to the results presented in Table 5, our method still achieves
improved performance for all the downstream tasks when
pre-trained on larger datasets. We also note that the im-
provement for the linear probing setting is minor when pre-
trained on 145M data. We assume this is because the per-
formance of the model saturates. To further improve the
performance of the image encoder, a more vision-specific
training task is needed. Note that using FDT still achieves
significant performance improvements on 145M data for
other tasks. Interestingly, our model achieves significant
improvements on the 30M data. One possible reason is that
our FDT can benefit significantly from cleaning supervision
information in the CC3M [43] and CC12M [5] datasets. We
have similar observations for the VQAv2 task.



ZS CLS LP CLS ZS-Flickr30K ZS-MSCOCO VQAv2
FDT size AVG Acc AVGAcc | IRR@1 TRR@1 rsum | IRR@1 TRR@1 rsum  overall
- 41.3 67.5 27.6 42.8 343.1 15.9 24.8 236.8 475
8192 42.8 67.9 32.7 50.6 374.6 18.5 29.1 258.1 50.1
16384 459 68.8 32.6 51.0 376.5 194 29.6 263.1 50.6
24576 452 68.6 333 50.4 378.5 18.6 29.7 263.1 51.4

Table 7. Results of the models with different FDT sizes. The row whose FDT value is “-” represents the original CLIP model. “ZS” means
zero-shot. “AVG” is average. “ACC” is accuracy. “LP” stands for linear prob. “CLS” represents classification. “IR” and “TR” are image

retrieval and text retrieval.

ZS CLS LP CLS ZS-Flickr30K ZS-MSCOCO VQAvV2

AVG Acc  AVG Acc | IRR@1 TRR@I rsum | IRR@1 TRR@1 rsum | overall
CLIP 41.3 67.5 27.6 42.8 343.1 15.9 24.8 236.8 475
CLIP+FDTsoftmax * 5.2 - 5.4 1.7 45.5 2.4 0.8 26.2 -
CLIP+FDTsparsemax * 324 10.5 32.5 242.4 6.0 18.3 157.5 -
CLIP+FDTsoftmax 439 68.7 333 479 377.6 19.2 28.3 258.8 479
CLIP+FDTsparsemax 45.9 68.8 32.6 51.0 376.5 194 29.6 263.1 50.6

Table 8. Results of models trained with (Sparsemax) and without (Softmax) sparse constraints. The rows marked with “*” are the results
when using FDT weights as features (see Section 4.3). “ZS” means zero-shot. “AVG” is average. “ACC” is accuracy. “LP” stands for
linear prob. “CLS” represents classification. “IR” and “TR” are image retrieval and text retrieval.

Image Encoder Architecture. We evaluate the influence
of different image encoder architectures on our proposed
method, and the results are reported in Table 6. We observe
that our method still significantly outperforms CLIP when
using different types of image encoders. Additionally, FDT
slightly adds an average of 6% more parameters, 13% more
training time, and 12% less throughput when using different
encoder architectures. The detailed results can be found in
the supplementary materials.

FDT Numbers. The performance of models trained with
different learnable token numbers are shown in Table 7. We
can see that using 8192 tokens can already achieve an im-
provement over CLIP. Increasing the FDT size to 16384
obtains a more significant improvement than 8192, since it
can encode more types of information. Furthermore, grow-
ing the FDT size to 24576 achieves a slight improvement
over 16384 for the zero-shot image-text retrieval task on the
Flickr30K dataset and VQA task. We set the FDT size as
16384 in our implementation because it achieves the best
performance-efficiency tradeoff.

Sparse Constraints. In this section, we aim to demon-
strate that applying sparse constraints helps the model learn
better cross-modal correspondence, where the same cross-
modal information is represented using the same subset of
FDT. To this end, we evaluate the performance when us-
ing the FDT weights (Equation 5, 7 and 8) of each image
or sentence as the features for zero-shot image classifica-
tion and image-text retrieval tasks. The results are reported
in Table 8. From the table, we can see that using sparse
constraints (Sparsemax) achieves significantly better per-
formance for all tasks. The results demonstrate that adding
sparse constraints to FDT weights can lead to better cross-
modal correspondence. Additionally, we can also see that

Text query: baseball players entertaining a crowd of spectators

Figure 3. Examples shows the top-5 retrieved images for the given
text queries for the text-to-image retrieval task on MSCOCO.

without sparse constraints (Softmax), FDT-based features
can also achieve significant performance over CLIP. Adding
a sparse constraint (Sparsemax) achieves a larger perfor-
mance improvement. This is because the granularities are
further unified by representing the same cross-modal infor-
mation with the same token set.

4.4. Analysis of the Completeness of Alignment

Since the granularities of image and text information are
inconsistent, the learned model may fail to capture key se-
mantic concepts [20]. In this experiment, we empirically
evaluate whether unifying the granularities through the pro-
posed FDT can alleviate the problem. The model pretrained
on the 145M dataset is used for this evaluation.

To this end, we design a probing experiment on the



Token Token to words

Token to patches

jumping
#5675 jump
#2166 cat

horse
#177 horses

pony
#3181 orange

Figure 4. Example of the top-5 most relevant image patches and text tokens of four FDT tokens. Note that the redundant text tokens in the
top-5 are removed. The color of the heatmap from blue to red denotes the relevance between patches and FDT from small to large.

MSCOCO dataset. Using the object detection annotations
in the training split of MSCOCO, we construct 305,723 sen-
tence pairs. For each sentence pair, one matched sentence
describes all objects in an image, while the other partially
matched sentence only captures part of the objects. Please
refer to the supplementary material for more details about
how we constructed these sentence pairs.

We then use pre-trained models to extract the embed-
dings of images and sentences and compute the similarity
scores between the images and these constructed sentences.
If the learned model comprehensively captures the semantic
concepts, the similarity between an image and its matched
sentence should be higher than that between the partially
matched sentence. We found that the CLIP+FDT models
can meet our expectation in 68.2 % of all sentence pairs,
surpassing the CLIP model by 7.6%. The results demon-
strate that FDT can help the CLIP model more comprehen-
sively capture various semantic concepts. We assume that
this is because the FDT serve as the prior knowledge that
guides encoders to extract cross-modally shared high-level
semantic concepts. This not only facilitates cross-modal in-
teractions but also helps encoders capture semantic infor-
mation from images and texts more comprehensively.

In addition, we show two cases for the text-to-image re-
trieval task in Figure 3. We can see that the images retrieved
by CLIP ignore some important concepts described in the
text queries. For example, in terms of the text query “base-
ball players entertaining a crowd of spectators”, four out of
the five images retrieved by the CLIP models contain base-
ball players only but with no spectators. Moreover, the im-
age containing spectators is ranked lower than the two im-
ages without spectators. In contrast, FDT can retrieve im-
ages that contain both baseball players and spectators. More
results are provided in the supplementary material.

4.5. Visualization of Learned FDT

To explicitly show the cross-modal correspondence
learned by our FDT, we visualize the top-5 most relevant
image patches and text tokens (using Equation 4 and 6) of
four FDT tokens in Figure 4. The MSCOCO dataset and
the model pretrained on the 145M dataset are used for vi-
sualization. The example cases show that each token cap-
tures different types of cross-modal correspondence, includ-
ing actions (jump/jumping), objects, and attributes (orange
color). Moreover, the learned FDT can potentially detect
correspondent patches from the images. For example, the
second token has high relevance values with patches of cats,
while having low relevance with other patches. More results
can be found in the supplementary material.

5. Conclusions

In this paper, we introduce a new multimodal presenta-
tion using finite discrete tokens (FDT). Specifically, a set
of learnable tokens shared by all modalities are used to
represent multimodal information conveyed in the image
and text modalities. Our approach is a light-weighted way
of fulfilling cross-modal interaction, where FDT serves as
multimodal anchors to capture information from each in-
put with better completeness. This help alleviate the model
degradation problem commonly observed in vanilla CLIP
models. Our FDT can be trained with the contrastive learn-
ing scheme from scratch without cold-start problems. Both
quantitative and qualitative results demonstrate that FDT
representations achieve better cross-modal alignment and
performance on various downstream tasks, including image
classification, cross-modal retrieval, and VQA. Addition-
ally, the learned FDT capture meaningful cross-modal cor-
respondence, ranging from objects to actions and attributes.
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A. Pre-training Implementation Details

We implement the projecting function that maps patch
or language token features to the FDT space as a fully-
connected layer with GELU activation (see Section 3.2).
Two different projecting functions are applied for mapping
patch and language token features, respectively. We regu-
larize the FDT using weight decay, with a rate of 0.1. We set
the batch sizes as 4096, 8192, and 32768 when pretraining
the models under the 15M, 30M, and 145M settings, respec-
tively. To ensure a fair comparison with the DECLIP [28]
and FILIP [51] models, we use the same data augmentation
as these models when training the CLIP and CLIP+FDT
models. Consequently, our reported results of the CLIP
model on the 15M setting are better than those reported
in the 15M benchmark [9]. We train ViT-B/32 based [12]
models considering our limited computation resource. The
input image resolution is 224 x 224, and the maximal input
language token number is 77. Following [9], we apply the
AdamW optimizer [33] with a weight decay rate of 0.1 dur-
ing pre-training. The learning rate is first linearly increased
to 0.001 with one epoch for warmup, and then decayed to
0 following the cosine strategy [32]. We use NVIDIA A100
GPUs for pre-training.

B. Downstream Implementation Details
B.1. Downstream Datasets

Image Classification Tasks. Following [28], we evalu-
ate our method on 11 datasets, including CIFAR-10 [24],
CIFAR-100 [24], SUN397 [47], Stanford Cars [23],
FGVC Aircraft [34], Describable Textures [8], Oxford-
IIIT Pets [38], Caltech-101 [14], Oxford Flowers 102 [37],
Food-101 [4], and ImageNet-1K [10].

Image-Text Retrieval. Our method is tested on two stan-
dard benchmarks: Flickr30K [53] and MSCOCO [29]. For
MSCOCO, we report the results on the 5K setting.
Non-Linear Probe task. We conduct the experiments on
the VQAv2 dataset [2]. Following the standard protocol
[13], we train the models with both training and validation
data, and test the models on the test-dev set.

B.2. Implementation Details

Zero-shot Image Classification. For a fair comparison, we
use the domain-specific prompts and category names pro-
posed by CLIP [40]. Note that we do not report the re-
sults on the StanfordCars and Aircraft datasets, because the
pertaining datasets contain few captions about the category
names of these datasets. For example, only 0.04% and 0%
of descriptions contain aircraft and car category names on
the 15M setting.

Linear Probe Image Classification. We train a logistic re-
gression classifier using L-BFGS, following CLIP [40]. We
set the maximum iterations number to 1,000, and determine
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the L2 regularization weights following DECLIP’s hyperpa-
rameter sweeping strategy [28]. We do not report the results
on the ImageNet-1K dataset, due to the high computational
cost of conducting hyperparameter sweeping on the dataset.
Non-linear Probe Task. The downstream task head con-
sists of a fully-connected layer with GELU activation and a
fully-connected layer. The extracted FDT features of im-
ages and questions are concatenated and then fed to the
downstream task head to predict the answers. The encoders
and FDT are frozen during the training. The downstream
head is optimized by the AdamW optimizer [33]. We set
the learning rate as 0.005, and decay it to O following the
cosine strategy [32].

C. Completeness Probing Experiment Details

Given an image that contains N objects, its matched sen-
tence is “An photo contains o1, 02 ..., OoN—1, and o, where
0; is the name of the ¢-th object in the images and all the ob-
jects are included. For the partially matched sentence, we
randomly remove an object and use the remaining N — 1
objects to construct a caption. For example, if the N-th
object is removed, the partially matched sentence is “An
photo contains o1, 05 ..., and oy—_1”. We can construct N
partially matched sentences for the image, resulting in NV
sentence pairs for the image. In our experiments, we ob-
tain the object presence information of images based on the
object detection annotations of the MSCOCO [29] dataset.
We construct 305,723 sentence pairs using all images in the
MSCOCO training split.

D. FDT Visualization Details

We use the model pre-trained on the 145M setting for
visualization because it achieves the best performance. To
visualize an FDT token, we first calculate its relevance score
between patches/language tokens following Equations 4
and 6 without using max-pooing. We then display the rele-
vance scores between the FDT token and the images corre-
sponding to the top-5 most relevant patches, since we find
that the patches alone cannot fully convey the object infor-
mation. We increase the resolution by reducing the patch
stride to 4, following the method proposed in [1]. For text
modality, we show the top-5 most relevant language tokens
of the FDT token.

E. Additional Experiment Results
E.1. Text-to-Image Retrieval Cases

We further provide five cases for the text-to-image re-
trieval task in Figure 5. We have the same observation that
the images retrieved by the CLIP+FDT well match the text
queries, while those retrieved by the CLIP models often
overlook important concepts mentioned in the text queries.



Text query: A set of park benches near a lamp post
3 1 s,

CLIP

CLIP+FDT

CLIP+FDT

Figure 5. Examples show the top-5 retrieved images for the given
text queries in the text-to-image retrieval task on MSCOCO.

E.2. Visualization of Learned FDT

We present eight learned FDT in Figure 6. These cases
further show that FDT can learn meaningful cross-modal
correspondence.

E.3. Pretraining Data Scale

The results of the models pretrained with different scales
of training data are reported in Table 9, 10, 11, and 12.

E.4. Image Encoder Architecture

To evaluate the influence of encoder architectures on our
methods, we pre-trained the models with different image
encoder architectures. The results for various downstream

13

tasks are reported in in Table 13, 14, 15, and 16. We also
report the computation costs when using different encoder
architectures in Table 17.

E.5. FDT Number

The results of models trained with different FDT num-
bers are shown in Table 18, 19, 20, and 21.

E.6. Sparse Constraints

We report the results of the models trained with and with-
out sparse constraint in Table 22, 23, 24, and 25.
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Figure 6. The top-5 most relevant image patches and text tokens of eight FDT tokens. Note that the redundant text tokens in the top-5 are
removed. The color of the heatmap from blue to red denotes the relevance between patches and FDT from small to large.
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C10 Cl100 F101 PETS FLOWE SUN DTD CAL IN AVG

ISM

CLIP 60.4 335 396 231 54.0 420 17.0 655 370 41.3
CLIP+FDT 67.7 399 429 258 55.5 455 265 696 393 459(14.6)

30M

CLIP 772 481 59.1 584 58.2 526 280 80.8 488 56.8
CLIP+FDT 819 56.5 626 623 59.5 56.7 336 848 533 61.2(144)

145M

CLIP 80.9 539 69.1 689 59.3 52.1 430 90.1 59.0 64.0
CLIP+FDT 87.1 63.7 735 77.0 65.0 56.2 477 905 60.4 69.0(15.0)

Table 9. Zero-shot image classification accuracy (%) when using different scales of training data. The dataset names are abbreviated.
C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over
all datasets.

C10 C100 F101 PETS FLOW SUN CARS DTD CAL AIR AVG

15M

CLIP 883 686 721 725 92.6 69.5 298 678 862 277 67.5
CLIP+FDT 89.1 712 744 730 934 708 314 694 877 279 68.8(11.3)

30M

CLIP 920 747 788  80.7 93.7 726 559 714 88.6 29.7 73.8
CLIP+FDT 938 778 81.6 826 94.5 743 544 739 923 309 756(11.8)

145M

CLIP 952 806 86.1 875 96.5 763 87,6 772 947 395 82.1
CLIP+FDT 948 80.8 855 858 95.7 759  88.1 785 946 429 823(102)

Table 10. Linear probing image classification accuracy (%) when using different scales of training data. The dataset names are abbreviated.
C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft. “AVG” is the average accuracy over all
datasets.
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Flickr30K MSCOCO

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@] R@5 R@10 R@l R@5 R@I0 rsum R@l R@5 R@10 R@l R@5 R@I0 rsum
15M setting
CLIP 27.6 539 644 428 715 829 343.1 159 367 478 248 498 618 236.8
CLIP+FDT 326 586 685 51.0 783 875 3765(1334) 194 408 519 296 553  66.1  263.1(126.3)
30M setting
CLIP 436 728 813 588 842  90.6 431.3 233 469 586 348 633 739 300.8

CLIP+FDT 525 787 864 708 90.8 950 4742(1429) 283 533 643 430 690 792 337.1(136.3)
145M setting

CLIP 526 785 864 679 899 945 469.8 293 541 654 421 671 77.2 335.2
CLIP + FDT 563  80.7 876 759 936 953 4894 (119.6) 31.0 557 66.7 464 719 81.3  353.0(117.8)

Table 11. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets when using different scales of training data.

y/m  number other overall

15M setting

CLIP 67.7 31.9 33.6 47.5
CLIP + FDT  67.8 34.6 39.6 506 (13.1)

30M setting

CLIP 69.7 34.8 37.8 50.6
CLIP + FDT 68.8 36.4 42.0 53.4(12.8)
145M setting

CLIP 70.9 36.5 41.7 53.1

CLIP + FDT 715 379 452  55.2(12.1)

Table 12. Results of non-linear probing on VQA v2 dataset when using different scales of training data.

C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG

ViT-B/32 604 335 396 231 54.0 420 17.0 655 370 41.3
ViT-B/32+FDT  67.7 399 429 258 55.5 455 265 69.6 393 459 (14.6)

ViT-B/16 64.6 321 497 257 59.7 434 213 679 421 452
ViT-B/16+FDT 740 42.1 494 285 62.2 505 251 714 456 499(14.7)

SwinV2-B 583 233 393 200 55.2 40.1 189 62.1 389 39.6
SwinV2-B+FDT 589 26.0 447 238 554 433 214 662 423 424(12.8)

Table 13. Zero-shot image classification accuracy (%) when using different image encoder architectures. The dataset names are abbreviated.
C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over
all datasets.

C10 C100 F101 PETS FLOW SUN CARS DTD CAL Air AVG

ViT-B/32 883 686 72.1 725 92.6 69.5 29.8 67.8 862 277 67.5
ViT-B/32+FDT 89.1 712 744 73.0 93.4 70.8 314 694 877 279 688(11.3)

ViT-B/16 892 695 803 751 95.9 734 334 715 883 320 68.8
ViT-B/16+FDT  89.3 716 823 758 96.1 742 340 718 88.6 293 71.3(125)
SwinV2-B 856 651 785 714 94.3 723 308 69.4 859 321 68.5

SwinV2-B+FDT 86.8 67.5 80.5 75.6 94.8 73.1 334 727 889 340 70.7(122)

Table 14. Linear probing image classification accuracy (%) when using different image encoder architectures. The dataset names are
abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft. “AVG” is the average
accuracy over all datasets.
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Flickr30K MSCOCO

Image Retrieval Text Retrieval Image Retrieval Text Retrieval
R@l R@5 R@10 R@l R@5 R@10 rsum R@l R@5 R@10 R@1 R@5 R@10 rsum
ViT-B/32 27.6 539 644 428 715 82.9 343.1 159 367 478 248 498 618 236.8
ViT-B/32+FDT 326 586 685 51.0 783 875 3765(1334) 194 408 519 296 553 66.1  263.1(126.3)
ViT-B/16 353 606 717 505 8l1.1 88.6 387.8 193 413 528 297 543 66.2 263.6
ViT-B/16+FDT 416 675 769 608 86.1 92.6  425.5(137.7) 234 467 580 353 604 71.6  295.4(131.8)
SwinV2-B 30,5 56.8 678 485 777 86.8 368.1 177 384 497 260 52.1 63.7 247.6

SwinV2-B+FDT 39.6 652 749 579 857 922 415501474 223 449 562 338 60.1 71.0  288.3(140.7)

Table 15. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets when using different image encoder archi-
tectures.

y/n  number other overall
ViT-B/32 67.7 319 33.6 475
ViT-B/32 + FDT  67.8 34.6 39.6  50.6(13.1)
ViT-B/16 69.0 332 36.0 49.2
ViT-B/16 + FDT ~ 72.0 37.6 429  543(15.1)
SwinV2-B 67.8 29.4 32.1 46.5

SwinV2-B + FDT 68.6 34.5 41.0 51.6(15.1)

Table 16. Results of non-linear probing on VQA v2 dataset when using different image encoder architectures.

#param  FLOPs Training time  Inference throughput

(s/iter) (image-text pairs/s)
CLIP-ViT-B/32 151M 7.3G 0.50 808.5
CLIP-ViT-B/32+FDT  161M 9.4G 0.60 642.8
CLIP-ViT-B/16 I50M  20.5G 1.15 315.7
CLIP-ViT-B/16+FDT  160M  25.1G 1.29 272.5
CLIP-Swin-B 151M 18.4G 1.41 258.3
CLIP-Swin-B+FDT 161M  20.5G 1.51 248.1

Table 17. Computation cost when using different image encoder architecture.

FDTsize C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG

- 604 335 396 231 54.0 420 170 655 370 413
8192 704 404 383 199 51.3 428 166 681 37.8 428
16384 67.7 399 429 258 55.5 455 265 69.6 393 459
24576 69.0 39.1 419 242 55.7 444 218 705 398 452

Table 18. Zero-shot image classification accuracy (%) of models with different FDT sizes. The row whose FDT value is “-” represents the
CLIP model. The dataset names are abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is
ImageNet-1K. “AVG” is the average accuracy over all datasets.

FDTsize C10 C100 F101 PETS FLOW SUN CARS DTD CAL Air AVG

- 883 686 721 725 92.6 695 298 67.8 862 277 675
8192 8.1 703 728 70.7 93.4 70.1 296 685 872 275 679
16384 89.1 712 744 73.0 93.4 708 314 694 877 279 68.8
24576 893 710 749 712 93.4 70.6  30.1 69.8 872 287 68.6

Table 19. Linear probing image classification accuracy (%) of models with different FDT sizes. The row whose FDT value is “-” represents
the CLIP model. The dataset names are abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air
is Aircraft. “AVG” is the average accuracy over all datasets.
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Flickr30K

MSCOCO

Image Retrieval

Text Retrieval

Image Retrieval

Text Retrieval

FDTsize R@1 R@5 R@10 R@l R@5 R@I0 rsum R@1 R@5 R@10 R@! R@5 R@I10 rsum
- 27.6 539 644 428 715 829 3431 159 367 478 248 498 618 2368
8192 327 583 687 506 774 869 3746 185 404 517 291 53.6 648 2581
16384 326 586 685 51.0 783 875 3765 194 408 519 296 553 66.1  263.1
24576 333 603 704 504 781 86.0 3785 186 403 51.8 297 558 669 263.1

Table 20. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets of models with different FDT sizes. The

IR

row whose FDT value is

represents the CLIP model.

FDTsize y/mn number other overall
- 67.7 31.9 33.6 475
8192 68.1 333 385 50.1
16384 67.8 34.6 39.6 50.6
24576 68.7 35.2 40.3 514
Table 21. Results of non-linear probing on VQA v2 dataset of models with different FDT sizes. The row whose FDT value is “-”
the CLIP model.
C10 C100 F101 PETS FLOW SUN DTD CAL IN AVG
CLIP 604 335 396 231 54.0 420 170 655 370 413
CLIP+FDTsoftmax * 23.7 1.2 4.6 2.7 1.8 3.5 42 4.1 1.2 5.2
CLIP+FDTsparsemax * 599 247 173 209 35.1 3.2 20.8 568 250 324
CLIP+FDTsoftmax 68.7 369 355 279 53.8 438 231 66.6 386 439
CLIP+FDTsparsemax 677 399 429 258 55.5 455 265 69.6 393 45.6

represents

Table 22. Zero-shot image classification accuracy (%) of models trained with (Sparsemax) and without (Softmax) sparse constraints. The
rows marked with “*” are the results when using FDT weights as features. The dataset names are abbreviated. C10/100 is CIFAR10/100.
F101 is Food101. FLOW is Flowers. CAL is Caltech. IN is ImageNet-1K. “AVG” is the average accuracy over all datasets.

C10 C100 F101 PETS FLOW SUN CARS DTD CAL Air AVG

CLIP 883 686 721 725 92.6 69.5 298 67.8 862 277 675
CLIP+FDTsoftmax ~ 88.0  71.7 748 719 93.8 704 305 69.8 873 28.6 687
CLIP+FDTsparsemax  89.1  71.2 744 73.0 934 70.8 314 694 877 279 6838

Table 23. Linear probing image classification accuracy (%) of models trained with (Sparsemax) and without (Softmax) sparse constraints.
The dataset names are abbreviated. C10/100 is CIFAR10/100. F101 is Food101. FLOW is Flowers. CAL is Caltech. Air is Aircraft.

“AVG” is the average accuracy over all datasets.

Flickr30K MSCOCO
Image Retrieval Text Retrieval Image Retrieval Text Retrieval
FDT size R@l R@5 R@I10 R@! R@5 R@I0 rsum R@1 R@5 R@I10 R@l R@5 R@I0 rsum
CLIP 276 539 644 428 715 829 3431 159 367 478 248 498 61.8 2368
CLIP+FDTsoftmax * 54 120 163 1.7 3.8 6.3 455 24 6.8 9.7 0.8 24 4.1 26.2
CLIP+FDTsparsemax * 105 29.8 392 325 598 706 2424 60 165 241 183 405 521 1575
CLIP+FDTsoftmax 333 607 695 479 780 8.2 377.6 192 403 517 283 53.8 655 2588
CLIP+FDTsparsemax 326 586 685 510 783 875 3765 194 408 519 296 553 66.1 2631

Table 24. Zero-shot image-text retrieval results on the Flickr30K and MSCOCO (5K) datasets of models trained with (Sparsemax) and
without (Softmax) sparse constraints. The rows marked with “*” are the results when using FDT weights as features.

y/n  number other overall
CLIP 67.7 31.9 33.6 47.5
CLIP+FDTsoftmax 65.7 31.9 36.2 47.9
CLIP+FDTsparsemax ~ 67.8 34.6 39.6 50.6

Table 25. Results of non-linear probing on VQAv2 dataset of models trained with (Sparsemax) and without (Softmax) sparse constraints.
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